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Abstract We study the random walk X on the range of a simple random walk on Z
d in

dimensions d ≥ 4. When d ≥ 5 we establish quenched and annealed scaling limits for the
process X, which show that the intersections of the original simple random walk path are
essentially unimportant. For d = 4 our results are less precise, but we are able to show
that any scaling limit for X will require logarithmic corrections to the polynomial scaling
factors seen in higher dimensions. Furthermore, we demonstrate that when d = 4 similar
logarithmic corrections are necessary in describing the asymptotic behavior of the return
probability of X to the origin.

Keywords Random walk · Scaling limit · Range of random walk · Random environment

1 Introduction

Let S = (Sn)n≥0 be the simple random walk on Z
d starting from 0, built on an underlying

probability space � with probability measure P. Define the range of the random walk S to
be the graph G = (V (G),E(G)) with vertex set

V (G) := {Sn : n ≥ 0} ,

and edge set

E(G) := {{Sn,Sn+1} : n ≥ 0} .

For P-a.e. random walk path, the graph G is infinite, connected and clearly has bounded
degree. In this article, the main object of study will be the discrete time simple random walk
on G , which we now introduce. For a given realization of G , write

X = (
(Xn)n≥0,PG

x , x ∈ V (G)
)
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to represent the Markov chain with transition probabilities

PG (x, y) := 1

degG (x)
1{{x,y}∈E(G)}, ∀x, y ∈ V (G),

where degG (x) is the usual graph degree of x in G . For x ∈ V (G), the law PG
x is the quenched

law of the simple random walk on G started from x. Since 0 is always an element of V (G),
we can also define an annealed law P for the random walk on G started from 0 as the semi-
direct product of the environment law P and the quenched law PG

0 by setting

P :=
∫

PG
0 (·)dP.

When d = 1,2 the recurrence of the random walk S easily implies that G is P-a.s. equal
to the vertex set Z

d equipped with edges connecting points a unit Euclidean distance apart.
Consequently, the law of X under P and also under PG

0 , P-a.s., is identical to the law of S

under P, which is well-understood. In particular, it follows that (n−1/2X�nt�)t≥0 converges
in distribution to standard Brownian motion in R

d , and there are Gaussian bounds for the
transition density of X. Conversely, for d ≥ 3 the random walk S is transient and does not
explore all of Z

d . In this case, since G has a non-deterministic structure, it becomes an
interesting problem to determine the behavior of X.

The problem of establishing dynamical properties of random walk paths has previously
been investigated by physicists, with one motivation for doing so being its application to the
study of the transport properties of sedimentary rocks of low porosity, where the commonly
considered sub-critical percolation model does not reflect the pore connectivity properties
seen in experiments, see [2], for example (references to other related models appear in [18],
Sect. 8.4). In particular, numerical simulations have been conducted in an attempt to de-
termine the walk dimension dW and spectral dimension dS of X, which are the exponents
satisfying E|Xn|2 ≈ n2/dW , where E is the expectation under P, and P(X2n = 0) ≈ n−dS/2 re-
spectively [19] (see below for further discussion of these dimensions). Although we do not
investigate here the case d = 3, which was a main focus of [19], our results do contribute to
the existing higher-dimensional literature. More specifically, we will prove precise scaling
results for X and a quenched limit expression for the spectral dimension of X when d ≥ 5,
and also demonstrate that logarithmic corrections to these scaling results are necessary when
d = 4.

To analyse the random walk on G when d ≥ 5 it transpires that it is useful to introduce
a second simple random walk S ′ on Z

d , which starts from 0 and is independent of S, and
define a two-sided walk S̃ = (S̃n)n∈Z by setting

S̃n :=
{
Sn, if n ≥ 0,

S ′−n, if n < 0.

It is known that the set of cut-times for the two-sided process S̃, which is defined by

T̃ :=
{
n : S̃(−∞,n] ∩ S̃[n+1,∞) = ∅

}
,

is infinite, P-a.s., and, moreover, the point process of cut-times is stationary. This obser-
vation was applied in [7] to determine properties of a random walk in a particular high-
dimensional random environment. In our case, by considering the sections of the random
walk path between these cut-times, we obtain that G̃ , the graph defined from S̃ analogously
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to the definition of G from S, can be constructed by stringing together a stationary ergodic
sequence of finite graphs (see Sect. 2), and exploiting this decomposition of G̃ we are able
to determine the correct scaling for the random walk on G̃ (see Theorem 3.4). Restricting to
G , we can subsequently deduce the following quenched and annealed scaling limits for the
simple random walk X on G . The processes B = (Bt )t≥0 and W(d) = (W

(d)
t )t≥0 are assumed

to be independent standard Brownian motions on R and R
d respectively, both started from

the origin. The notation dG is used to represent the shortest path graph distance on G .

Theorem 1.1 Let d ≥ 5. There exists a deterministic constant κ1(d) ∈ (0,∞) such that, for
P-a.e. realization of G , the law of

(
n−1/2dG (0,X�tn�)

)
t≥0

,

under PG
0 , converges as n → ∞ to the law of (|Btκ1(d)|)t≥0. There also exists a deterministic

constant κ2(d) ∈ (0,∞) such that the law of

(
n−1/4X�tn�

)
t≥0

,

under P, converges as n → ∞ to the law of (W
(d)
|Btκ2(d)|)t≥0.

By imitating the construction in [10] of the Brownian motion on the range of the super-
Brownian motion conditioned to have total mass equal to one, it is possible to interpret
the limiting process of part (b) of the above theorem as the Brownian motion on the range
R := {W(d)

t : t ≥ 0} of the Brownian motion W(d). In particular, if d ≥ 4, P-a.s., the map
t 
→ W

(d)
t is injective, and so between any two points x, y ∈ R, there is a unique arc. More-

over, by applying [9], Theorem 5, P-a.s., we can define a metric dR on R by setting dR(x, y)

to be equal to the Hausdorff measure with gauge function c(d)x2 ln lnx−1 of the arc between
x and y in R, where the deterministic constant c(d), depending only on d , can be chosen
so that if x = W(d)

s and y = W
(d)
t , then dR(x, y) = |s − t |. Since t 
→ W

(d)
t is a measure

preserving isometry from R+, equipped with the one-dimensional Lebesgue measure, to
(R, dR,μR), where μR is the Hausdorff measure with gauge function c(d)x2 ln lnx−1 re-
stricted to R, there is no problem in checking that the canonical Brownian motion BR on the
metric-measure space (R, dR,μR) is simply the image under the map t 
→ W

(d)
t of the stan-

dard Brownian motion on R+ reflected at 0, for P-a.e. realization of R (see [1], Sect. 5.2,
for a natural definition of a Brownian motion on a tree-like metric-measure space). After
checking that the law of BR can constructed in a W(d)-measurable way, which is much
more straightforward than the corresponding measurability result of [10], Proposition 7.2,
in dimensions d ≥ 4 we are able to define the annealed law of BR by averaging out over the
law of W(d). The resulting C(R+,R

d)-valued process, the Brownian motion on the range of
Brownian motion, satisfies

(
BR

t

)
t≥0

=
(
W

(d)
|Bt |

)

t≥0

in distribution, and is therefore, when d ≥ 5, the scaling limit of the simple random walk on
the range of a simple random walk, at least up to a constant time-change.

For d ≥ 5 further understanding of the random walk on the range of random walk is
provided by the following result, which demonstrates that the quenched probability that the
process X returns to the origin after 2n steps decays polynomially with the same exponent
as for standard simple random walk on Z. As with the previous result, its proof relies on
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determining properties of the one-sided graph G using the ergodic description we have for
the two-sided graph G̃ . See (27) for the corresponding annealed bounds.

Theorem 1.2 Let d ≥ 5. There exist deterministic constants c1, c2 ∈ (0,∞) such that, for
P-a.e. realization of G ,

c1n
−1/2 ≤ PG

0 (X2n = 0) ≤ c2n
−1/2, (1)

for large n.

For d = 4 the set of cut-times T̃ is empty, P-a.s., and so we can not use the same ergodic
arguments to analyse X as in the higher-dimensional case. However, the one-sided simple
random walk S still admits cut-times, by which we mean that the set

T :=
{
n : S̃[0,n] ∩ S̃[n+1,∞) = ∅

}
, (2)

is non-empty, P-a.s., and considering the structure of G between the cut-points (Sn)n∈T will
prove similarly helpful in understanding the random walk X on G . Whilst we are unable to
prove exact scaling in this dimension, we are able to show that any such result will require
extra logarithmic correction terms compared to higher dimensions, thereby demonstrating
that the random walk is anomalous in this dimension (see [18] for an excellent survey of
work regarding anomalous diffusions in disordered media). Thus, in the language of sta-
tistical mechanics, this result establishes that the critical dimension of the random walk on
the range of the random walk is 4. We note that the fact that the intersections of the of the
original simple random walk affect the behavior in a logarithmic way in d = 4, but can ef-
fectively be neglected for higher dimensions, is not a surprise given the analogous results
known to hold for other random walk models depending on self-interaction properties. These
include the self-avoiding walk, for which logarithmic corrections have not yet been rigor-
ously proved in 4 dimensions, see [29], Chap. 2, for a summary of mathematical results, but
have been observed in physics, where relevant work includes [8, 11, 14, 17], and also the
loop-erased random walk introduced by Lawler [22] (see also [24]). In fact, in proving the
subsequent theorem, we exploit the fact that the number of steps in the loop-erasure of the
path from Sm to Sn gives an upper bound for graph distance in G between Sm and Sn.

Theorem 1.3 If d = 4, then

lim
λ→∞ lim inf

n→∞ P

(
λ−1n1/4(lnn)1/24 ≤ max

m≤n
|Xm| ≤ λn1/4(lnn)7/12

)
= 1. (3)

In addition to the above result regarding the scaling of the random walk X on G , when
d = 4 we can also establish bounds for the quenched transition density of the random walk
on G , which confirms that logarithmic corrections to the bounds that hold in higher dimen-
sions are necessary for this quantity too.

Theorem 1.4 If d = 4, then

lim
λ→∞ lim inf

n→∞ P
(
λ−1n−1/2(lnn)−3/2 ≤ PG

0 (X2n = 0) ≤ λn−1/2(lnn)−1/6
) = 1.

Let us continue by observing that the results of Theorems 1.1 and 1.3 (and also
Lemma 4.3 below) imply a distributional version of the result that the walk dimension dW of
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X is 4 with respect to the Euclidean distance and 2 with respect to the graph distance when
d ≥ 4, which contrasts with the low-dimensional d ≤ 2 setting, where dW = 2 with respect
to both distances. Furthermore, defining the quenched spectral dimension of the random
walk X by the limit

dS := lim
n→∞

2 ln PG
0 (X2n = 0)

− lnn
,

when it exists, our results demonstrate that the spectral dimension depends on d in the
following way: dS = 1, P-a.s., for d = 1 and d ≥ 5; dS = 2, P-a.s., for d = 2; dS defined by
a probabilistic limit is equal to 1 for d = 4 (in a recent preprint, this has actually been shown
to be true P-a.s. [28]). The problem of determining dW and dS when d = 3 seems difficult,
and we do not present any progress on this problem here, but merely remark that physicists’
numerical simulations suggest that dW ≈ 7/2 with respect to the Euclidean distance, and
dS ≈ 8/7 in this dimension [19], and note that a non-trivial bound confirming that dS > 1 is
proved in [28].

Finally, another natural choice of transition probabilities for the random walk X on G is
to set PG (x, y) = μxy/μx for {x, y} ∈ E(G), where

μxy := # {n : {Sn,Sn+1} = {x, y}} (4)

is the number of crossings of the edge {x, y} by S and μx := ∑
y:{x,y}∈E(G) μxy , so that the

random walk X is more likely to jump along edges that the random walk S traversed more
frequently. With straightforward modifications to the proofs, all the results stated in the
introduction, albeit with suitably adjusted constants, will hold for this random walk. See the
end of Sect. 3 for elaboration on this point.

The article is organized as follows. In Sect. 2, we describe the decomposition of G̃ into a
stationary ergodic sequence of finite graphs for d ≥ 5, and then proceed in Sect.3 to apply
this to proving Theorems 1.1 and 1.2. Finally, in Sect. 4, we investigate the behavior of X in
the critical dimension d = 4 in order to establish Theorems 1.3 and 1.4.

2 Ergodic Behavior for d ≥ 5

In this section we suppose that d ≥ 5 and study the two-sided graph G̃ . Let us start by making
explicit our probability space by setting � to be equal to the countable product of discrete
spaces {x ∈ Z

d : |x| = 1}Z, and equipping this set with the product σ -algebra. We suppose
that P is defined to satisfy

P((ω−m, . . . ,ωn) = (x−m, . . . , xn)) = (2d)−(m+n+1),

for every (x−m, . . . , xn) ∈ {x ∈ Z
d : |x| = 1}m+n+1, m,n ≥ 0, and also that

S̃n = S̃n(ω) :=
⎧
⎨

⎩

ω1 + · · · + ωn, n ≥ 1,

0, n = 0,

−(ωn+1 + · · · + ω0), n ≤ −1.

We will denote by (θn)n∈Z the canonical shift maps on �, so that (S̃ ◦ θm)n = S̃m+n − S̃m for
m,n ∈ Z.

In the high-dimensional case we are considering here, it is possible to check that there
is a strictly positive probability that 0 is a cut-time for S̃ by applying results of [15], and
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consequently the probability measure P̂ := P(·|0 ∈ T̃ ) is well-defined. Furthermore, also
by [15], the measurable set �∗ ⊆ � where T̃ ∩ (−∞,0] and T̃ ∩ [0,∞) are both infinite
satisfies P(�∗) = 1, and we henceforth suppose that P and P̂ are restricted to this set. In
particular, we can always write T̃ = {Tn : n ∈ Z}, where · · ·T−2 < T−1 < T0 ≤ 0 < T1 <

T2 < · · · . Fundamental in proving many of our subsequent results is the following lemma,
where E and Ê are the expectations under P and P̂ respectively.

Lemma 2.1 The measure P̂ is invariant under and ergodic for θ̂ := θT1 . Moreover, for
bounded measurable f ,

E(f ) = Ê(
∑T1−1

n=0 f ◦ θn)

Ê(T1)
, (5)

where Ê(T1) ∈ [1,∞).

Proof See [7], Lemma 1.1 and proof of [7], Proposition 1.3. �

If we define for each n ∈ Z a graph G̃n to have vertex set

V (G̃n) :=
{
S̃m − Cn : Tn ≤ m ≤ Tn+1

}
,

and edge set

E(G̃n) :=
{
{S̃m − Cn, S̃m+1 − Cn} : Tn ≤ m < Tn+1

}
,

where we write Cn to represent the cut-point S̃Tn , then the previous lemma immediately
implies that the sequence of finite graphs with distinguished vertices ((G̃n,Cn+1 − Cn))n∈Z

is stationary and ergodic under P̂. Moreover, it is clear that G̃ can be reconstructed from
((G̃n,Cn+1 − Cn))n∈Z by adjoining graphs at cut-points. As a consequence of this ergodic-
ity, we are able to define finitely a number of P̂-a.s. limits and expectations under P̂. The
quantities defined in the following lemma will later appear in the definitions of the diffusion
constants for the scaling limits of the random walks on G̃ and G . We write dG̃ to represent the
shortest path graph distance on G̃ . The function RG̃ is the effective resistance on G̃ when we
suppose that a unit resistor is placed along each edge (see [3], Definition 4.23, for example).
The usual graph degree of x in G̃ is denoted by degG̃ (x).

Lemma 2.2 P̂-a.s., we have that

Tn

n
→ τ(d) := ÊT1 ∈ [1,∞), (6)

dG̃ (0,Cn)

|n| → δ(d) := ÊdG̃ (0,C1) ∈ [1,∞), (7)

RG̃ (0,Cn)

|n| → ρ(d) := ÊRG̃ (0,C1) ∈ [1,∞), (8)

as |n| → ∞. Furthermore,

ν(d) := 1

2
ÊdegG̃ (0) ∈ [1,∞).
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Proof If n ∈ N, then Tn − T0 = ∑n

m=1(Tm − Tm−1). Thus the limit at (6) as n → ∞ results
from the ergodic theorem and the finiteness of τ(d), which was noted in the previous lemma.
Similarly for n → −∞. To establish (7), observe that |n| ≤ dG̃ (0,Cn) ≤ |Tn| for every n ∈ Z,
from which it follows that lim sup|n|→∞ dG̃ (0,Cn)/|n| ∈ [1, τ (d)], P̂-a.s. Thus, the ergodic
theorem again implies the limiting result with δ(d) ∈ [1, τ (d)]. The resistance on a graph
is always bounded above by the graph distance. Hence the expectation in (8) is finite and
satisfies ρ(d) ≤ δ(d). Moreover, whenever 0 ∈ T̃ , it is clear that any path in G̃ from 0
to C1 must contain the edge {S0, S1}. This implies that RG̃ (0,C1) ≥ 1, P̂-a.s., and therefore
ρ(d) ≥ 1. The series law for resistors allows us to again apply the ergodic theorem to deduce
the limit exists. Finally, it is elementary to check that the remaining expectation satisfies
1 ≤ ν(d) ≤ τ(d), which completes the proof. �

3 Scaling Limit and Transition Probability for d ≥ 5

Applying the description of G̃ from the previous section, we now proceed to analyse the
associated random walk, with the first aim of this section being to prove a two-sided version
of Theorem 1.1. We will write X̃ to represent the random walk on G̃ ; its quenched law
started from 0 will be denoted PG̃

0 . Define the hitting times by X̃ of the set of cut-points
C̃ := {Cn : n ∈ Z} by

H0 := min{m ≥ 0 : X̃m ∈ C̃}, (9)

and, for n ≥ 1,

Hn := min{m > Hn−1 : X̃m ∈ C̃}. (10)

Denote by π the bijection from Z to C̃ that satisfies π(n) = Cn, and let J = (Jn)n≥0 be the
Z-valued process obtained by setting

Jn := π−1
(
X̃Hn

)
.

Note that J can remain at a particular integer for multiple time-steps. Using techniques de-
veloped for the random conductance model, it is possible to deduce the following quenched
scaling limit for J .

Lemma 3.1 Let d ≥ 5. For P̂-a.e. realization of G̃ , the law of (n−1/2J�tn�)t≥0 under PG̃
0

converges to the law of (Bt/ν(d)ρ(d))t≥0.

Proof Fix a particular ω ∈ �∗ ∩{0 ∈ T̃ }, set G̃ = G̃(ω) and let n ∈ Z. Conditional on Jm = n,
the amount of time that J spends at position n from time m until it next hits {n − 1, n + 1}
is geometric, parameter p, where p := PG̃

0 (Jm+1 = n|Jm = n), and therefore has expectation
(1 − p)−1. Applying the definition of J , it is possible to check that this expectation is also
equal to

EG̃
Cn

⎛

⎝
H({Cn−1,Cn+1})−1∑

m=0

1{X̃m=Cn}

⎞

⎠ = degG̃ (Cn)RG̃ (Cn, {Cn−1,Cn+1})

= degG̃ (Cn)RG̃ (Cn−1,Cn)RG̃ (Cn,Cn+1)

RG̃ (Cn−1,Cn+1)
,
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where H({Cn−1,Cn+1}) := min{m : X̃m ∈ {Cn−1,Cn+1}}, the first equality is an application
of a well-known electrical network interpretation of the occupation density of a killed ran-
dom walk on a graph (see [13] or [27], Chap. 2, for example) and the second equality follows
from the parallel law for electrical resistance. Rearranging for p, we find that

PG̃
0 (Jm+1 = n|Jm = n) = 1 − RG̃ (Cn−1,Cn+1)

degG̃ (Cn)RG̃ (Cn−1,Cn)RG̃ (Cn,Cn+1)
. (11)

Further elementary calculations allow it to be deduced that

PG̃
0 (Jm+1 = n ± 1|Jm = n) = 1

degG̃ (Cn)RG̃ (Cn,Cn±1)
. (12)

These formulae easily imply that the process (sgn(Jn)RG̃ (0,π(Jn)))n≥0 is a martingale, and
the stationary ergodic decomposition of G̃ of the previous section allows us to apply the
Lindeberg-Feller central limit theorem to this martingale by making only simple adapta-
tions to the “environment viewed from the particle” argument described in the introduction
of [6] for a random walk among stationary ergodic random conductances. In particular, to
deduce that the law of (n−1/2sgn(J�tn�)RG̃ (0,π(J�tn�)))t≥0 under PG̃

0 converges to a Brown-
ian motion law as n → ∞, it will suffice to demonstrate the square integrability condition

Ê(degG̃ (0)EG̃
0 RG̃ (0, X̃H1)

2)

ÊdegG̃ (0)
< ∞

holds. Moreover, we will show that the left-hand side above, which provides the limiting
diffusion constant, is equal to ρ(d)/ν(d). Note that the degG̃ (0)/ÊdegG̃ (0) factor arises here
as a result of the fact that the invariant measure of J is given by (degG̃ (Cn))n∈Z, which can
be checked using (12) and the detailed-balance equations. From the transition probabilities
at (11) and (12), we have that

degG̃ (0)EG̃
0 RG̃ (0, X̃H1)

2 = RG̃ (0,C1) + RG̃ (0,C−1).

Hence, by stationarity,

Ê
(

degG̃ (0)EG̃
0 RG̃ (0, X̃H1)

2
)

= 2ρ(d),

which confirms that the limiting diffusion constant is indeed ρ(d)/ν(d). To complete the
proof, we note from (8) that sgn(n)RG̃ (0,π(n)) ∼ nρ(d) as |n| → ∞, and hence the law of

(n−1/2J�tn�)t≥0 under PG̃
0 converges to the law of a Brownian motion with diffusion constant

ρ(d)/ν(d)ρ(d)2 = 1/ν(d)ρ(d). �

We now show that the hitting times (Hn)n≥0 defined at (9) and (10) grow linearly as-
ymptotically. In the proof of this result, we consider the measure μG̃ on V (G̃) defined to
satisfy

μG̃ ({x}) := degG̃ (x), ∀x ∈ V (G̃).

It arises naturally in the argument, because it is invariant for the simple random walk X̃

on G̃ .
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Lemma 3.2 Let d ≥ 5. For P̂-a.e. realization of G̃ , PG̃
0 -a.s., we have that

Hn

n
→ η(d) := Ê(degG̃ (0)EG̃

0 H1)

ÊdegG̃ (0)
∈ [1,∞).

Proof We start by checking that η(d) ∈ [1,∞). Fix ω ∈ �∗ ∩ {0 ∈ T̃ } and set G̃ = G̃(ω).
Applying the Markov property of X̃ and standard bounds for hitting times of random walks
on graphs in terms of resistance and volume (see [3], Corollary 4.28, for example), we find

1 ≤ EG̃
0 H1 ≤ 1 + sup

x∈V (G̃)\{C−1,C1}:
{0,x}∈E(G̃)

EG̃
x H1

≤ 1 + sup
x∈V (G̃)\{C−1,C1}:

{0,x}∈E(G̃)

RG̃ (x, {C−1,0,C1})μG̃ (A\{0}) , (13)

where A is the graph connected component of V (G̃)\{C−1,C1} and we set the supremum
of an empty set to be zero. Since any x in the set over which above supremum is taken
is connected to {C−1,0,C1} by a path consisting of a single edge, the resistance in this
expression is bounded above by 1. A simple counting exercise also implies that

μG̃ (A\{0}) ≤ 2(T1 − T−1) − degG̃ (0) − 2 ≤ 2(T1 − T−1) − 4. (14)

Therefore, taking expectations, 1 ≤ η(d) ≤ 1 + 4dτ(d)/ν(d) < ∞.
The limit statement of the lemma can be proved similarly to [12], (4.16), replacing the

exponential holding times of that article with the random hitting times (Hn+1 − Hn)n≥0. In
particular, it is possible to check that the sequence

((G̃ − X̃Hn,Hn+1 − Hn))n≥0

is ergodic under the annealed measure
∫

PG̃
0 (·)dP̂, where G̃ − X̃Hn is the graph with vertex

set {x − X̃Hn : x ∈ V (G̃)} and edge set {{x − X̃Hn, y − X̃Hn} : {x, y} ∈ E(G̃)}. Moreover,
from the expressions for the transition probabilities of J at (11) and (12), it is possible to
deduce that the invariant measure of ((G̃ − X̃Hn,Hn+1 − Hn))n≥0 is given by the law of

(G̃,H1) under the size-biased measure
∫

degG̃ (0)PG̃
0 (·)dP̂/ÊdegG̃ (0), which is clearly bi-

absolutely continuous with respect to
∫

PG̃
0 (·)dP̂. Consequently, the proof of the lemma can

be completed by an application of the ergodic theorem. �

The subsequent corollary demonstrates that the two previous results are unaffected by
dropping the conditioning on the event {0 ∈ T̃ }.

Corollary 3.3 Let d ≥ 5. Lemmas 3.1 and 3.2 also hold for P-a.e. realization of G̃ .

Proof Fix ω ∈ �∗ and set G̃ = G̃(w). Suppose that the conclusions of Lemmas 3.1 and 3.2
hold for both G̃ ◦ θT0 and G̃ ◦ θT1 . Noting that H0 < ∞, PG̃

0 -a.s., we can write

PG̃
0 = PG̃

0 (·|J0 = 0)PG̃
0 (J0 = 0) + PG̃

0 (·|J0 = 1)PG̃
0 (J0 = 1).
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The law of (Jn,Hn − H0)n≥0 under PG̃
0 (·|J0 = 0) is equal to the law of (Jn,Hn)n≥0 under

P
G̃◦θT0
0 . Similarly, the law of (Jn,Hn − H0)n≥0 under PG̃

0 (·|J0 = 1) is equal to the law of

(Jn + 1,Hn)n≥0 under P
G̃◦θT1
0 . It follows that the law of (n−1/2J�tn�)t≥0 under PG̃

0 converges
to that of a Brownian motion with diffusion constant 1/ν(d)ρ(d), and Hn/n converges to
η(d), PG̃

0 -a.s. To complete the proof, note that the characterization of P at (5), combined
with the invariance of P̂ under θ̂ = θT1 , allows us to apply Lemmas 3.1 and 3.2 to deduce
that our assumptions on G̃ hold P-a.s. �

This result allows us to prove our two-sided version of Theorem 1.1 with

κ1(d) := δ(d)2

ν(d)ρ(d)η(d)
∈ (0,∞),

κ2(d) := τ(d)2

ν(d)ρ(d)η(d)
∈ (0,∞).

We define the annealed measure of the random walk X̃ on G̃ by setting P̃ := ∫
PG̃

0 (·)dP.

Theorem 3.4 Let d ≥ 5. For P-a.e. realization of G̃ , the law of

(
n−1/2dG̃ (0, X̃�tn�)

)

t≥0
,

under PG̃
0 , converges as n → ∞ to the law of (|Btκ1(d)|)t≥0. Furthermore, the law of

(
n−1/4X̃�tn�

)

t≥0
,

under P̃, converges as n → ∞ to the law of (W
(d)
Btκ2(d)

)t≥0.

Proof If the discrete time inverse H−1 of H is defined by setting

H−1
n := min{m : Hm > n},

then Corollary 3.3 implies that the law of

(
n−1/2δ(d)

∣
∣Z�tn�

∣
∣)

t≥0

under PG̃
0 converges to the law of (|Btκ1(d)|)t≥0, for P-a.e. realization of G̃ , where Z =

(Zn)n≥0 is defined by setting

Zn := J
H−1

n
. (15)

Hence, we will obtain that the same convergence result holds for (n−1/2dG̃ (0, X̃�tn�))t≥0, if
we can show that, for every ε,T ∈ (0,∞),

lim
n→∞ PG̃

0

(
n−1/2 sup

t∈[0,T ]

∣
∣∣dG̃ (0, X̃�tn�) − δ(d)|Z�tn�|

∣
∣∣ > ε

)
= 0, (16)
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for P-a.e. G̃ . Writing Z∗
n := supm≤�T n� |Zm|, the definitions of π and Z imply that

sup
t∈[0,T ]

∣∣
∣dG̃ (0, X̃�tn�) − δ(d)|Z�tn�|

∣∣
∣

≤ sup
t∈[0,T ]

∣
∣∣dG̃ (0, X̃�tn�) − dG̃ (0,π(Z�tn�))

∣
∣∣ + sup

t∈[0,T ]

∣
∣dG̃ (0,π(Z�tn�)) − δ(d)|Z�tn�|

∣
∣

≤ sup
|m|≤Z∗

n+1
diamG̃m + sup

|m|≤Z∗
n

∣
∣dG̃ (0,Cm) − δ(d)m

∣
∣ ,

where diamG̃m is the diameter of the graph G̃m, as defined in Sect. 2, which is bounded above
by Tm+1 −Tm. Now, from the convergence results above, we can conclude that the sequence
(n−1/2δ(d)Z∗

n)n≥0 converges in distribution under P̃G̃
0 to B∗ := supt≤T |Btκ1(d)|, which is a

finite random variable. Consequently, to prove (16) it will be enough to establish that

n−1 sup
|m|≤n

(Tm+1 − Tm) → 0, (17)

n−1 sup
|m|≤n

∣
∣dG̃ (0,Cm) − δ(d)m

∣
∣ → 0, (18)

as n → ∞, P-a.s. Both of these limits are easily deduced from Lemma 2.2, which completes
the proof of the first part of the theorem.

For the second part of the theorem, we first note that

sup
t∈[0,T ]

∣
∣∣X̃�tn� − S̃�τ(d)Z�tn��

∣
∣∣

≤ sup
t∈[0,T ]

∣∣
∣X̃�tn� − π(Z�tn�)

∣∣
∣ + sup

t∈[0,T ]

∣∣
∣π(Z�tn�) − S̃�τ(d)Z�tn��

∣∣
∣

≤ sup
|m|≤Z∗

n+1
sup

Tm≤l,l′≤Tm+1

∣
∣∣S̃l − S̃l′

∣
∣∣ + sup

|m|≤Z∗
n

∣
∣∣π(m) − S̃�τ(d)m�

∣
∣∣ ,

where (Z∗
n)n≥0 is defined as above. From (6) and the weak convergence of (n−1/4S̃�tn1/2�)t≥0

under P,

lim
n→∞ P̃

(

n−1/4 sup
|m|≤Z∗

n

∣
∣∣π(m) − S̃�τ(d)m�

∣
∣∣ > ε

)

= 0,

where we also apply the fact that (n−1/2Z∗
n)n≥0 converges in distribution under P̃ to the finite

random variable B∗. Furthermore, again applying the weak convergence of (n−1/4S̃�tn1/2�)t≥0

and n−1/2Z∗
n , (17) implies that

lim
n→∞ P̃

(

n−1/4 sup
|m|≤Z∗

n+1
sup

Tm≤l,l′≤Tm+1

∣∣
∣S̃l − S̃l′

∣∣
∣ > ε

)

= 0.

Consequently, we have proved that

lim
n→∞ P̃

(
n−1/4 sup

t∈[0,T ]

∣
∣∣X̃�tn� − S̃�τ(d)Z�tn��

∣
∣∣ > ε

)
= 0. (19)
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From the convergence result for Z described at the beginning of the proof and the weak
convergence of (n−1/4S̃�tn1/2�)t≥0, it is possible to check that the joint law of

(
n−1/4S̃�tn1/2�, n

−1/2τ(d)Z�tn�
)

t≥0
,

under P̃, converges to the joint law of (W
(d)
t ,Btκ2(d))t≥0. Composing the two processes of

the above pair and applying (19), the second conclusion of the theorem follows. �

To adapt the proof of the above theorem to deal with the case of the random walk X on
the range of a single random walk G , we start by showing how the process X̃ observed on
the set

V (G̃)+ := {Sn : n ≥ T1} (20)

satisfies the conclusions of Theorem 1.1 by applying a time-change argument, and then
complete the proof by demonstrating that the time-changed process can be coupled with X

in such a way that it is uniformly close on compact time intervals. First, construct an additive
functional AZ = (AZ

n )n≥0 related to the process Z, defined as at (15), by setting AZ
0 = 0 and

AZ
n :=

n−1∑

m=0

1{Zm≥0},

for n ≥ 1. The analogous functional AB = (AB
t )t≥0 for the Brownian motion B is obtained

by setting

AB
t :=

∫ t

0
1{Bs≥0}ds,

for t ≥ 0.

Lemma 3.5 Let d ≥ 5. For P-a.e. realization of G̃ , the joint law of

(
n−1/2δ(d)Z�tn�, n−1AZ

�tn�
)
t≥0

under PG̃
0 converges to the joint law of (Btκ1(d), κ1(d)−1AB

tκ1(d))t≥0.

Proof Similarly to the previous proof, the convergence of the first coordinate follows from
Corollary 3.3. The lemma is a straightforward consequence of this result and the fact that∫ t

0 1{Bs∈[−ε,ε]}ds → 0 almost surely as ε → 0, for every finite t . �

The time-change of X̃ that we consider will be based on the additive functional AX̃ =
(AX̃

n )n≥0, defined by setting AX̃
0 := 0 and

AX̃
n :=

n−1∑

m=0

1{X̃m,X̃m+1∈V (G̃)+},

for n ≥ 1, where V (G̃)+ was introduced at (20). That AX̃ and AZ are close is demonstrated
by the following lemma.
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Lemma 3.6 Let d ≥ 5. For P-a.e. realization of G̃ , for every ε,T ∈ (0,∞),

lim
n→∞ PG̃

0

(
n−1 sup

m≤T n

∣∣
∣AX̃

m − AZ
m

∣∣
∣ > ε

)
= 0.

Proof By definition, if n ∈ [Hm,Hm+1), then H−1
n = m + 1. It follows that the condition

Zn ≥ 3, which is equivalent to

X̃H
H

−1
n

∈ {Sm : m ≥ T3},

implies that X̃n, X̃n+1 ∈ V (G̃)+. Conversely, one can check that X̃n, X̃n+1 ∈ V (G̃)+ implies
Zn ≥ 0. Consequently,

sup
m≤T n

∣∣
∣AX̃

m − AZ
m

∣∣
∣ ≤

n∑

m=0

1{Zm∈{0,1,2}}.

By applying the convergence of the rescaled Z to Brownian motion described in Lemma 3.5,
the result is readily deduced from this bound. �

We now introduce a process X̃+ = (X̃+
n )n≥0 by setting X̃+

n := X̃α̃(n), where α̃ = (α̃(n))n≥0

is the discrete time inverse of AX̃ , defined to satisfy

α̃(n) := max{m : AX̃
m ≤ n}.

Note that X̃+ has the same distribution as the simple random walk on the graph generated
by (Sm)m≥T1 started from C1. We can construct an identically distributed process, X+ say,
from X. To this end, first let AX be an additive function defined from X, analogously to the
definition of AX̃ from X̃. Take α to be the discrete time inverse of AX and then set X+

n :=
Xα(n) for n ≥ 0. To establish that X+ and X̃+ have the same distribution is an elementary
exercise, and this equivalence allows us to prove the following result.

Lemma 3.7 Theorem 1.1 holds with X+ in place of X.

Proof From (16) and Lemmas 3.5 and 3.6, it is possible to deduce that for P-a.e. realization
of G̃ , the joint law of

(
n−1/2dG̃ (0, X̃�tn�), n−1AX̃

�tn�
)

t≥0

under PG̃
0 converges to the joint law of (|Btκ1(d)|, κ1(d)−1AB

tκ1(d))t≥0. Since the process
(BαB(tκ1(d)))t≥0 has the same distribution as (|Btκ1(d)|)t≥0, where αB is the right-continuous
inverse of AB , it easily follows that the law of

(
n−1/2dG̃ (0, X̃+

�tn�)
)

t≥0

under PG̃
0 converges to the law of (|Btκ1(d)|)t≥0. Taking into account the comments preceding

this lemma, there is no problem in substituting X+ for X̃+. To replace dG̃ by dG , it suffices
to note that

sup
x∈V (G)

∣
∣dG (0, x) − dG̃ (0, x)

∣
∣ ≤ T1 − T0,
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which is finite, P-a.s. We have therefore established the first convergence result that we are
required to prove. By applying (19) in place of (16), the second convergence result can be
proved similarly. �

To complete the proof of Theorem 1.1, all that remains to show is that X+ is a good
approximation for the simple random walk X. We do this in the next lemma by suitably
bounding the amount of time that the sample paths of X spend close to 0. In doing so,
we introduce a measure μG on V (G) by defining μG ({x}) := degG (x) for x ∈ V (G), and
consider the ball BG (x, r) := {y ∈ V (G) : dG (x, y) ≤ r}.

Lemma 3.8 Let d ≥ 5 and ε,T > 0. For P-a.e. realization of G ,

lim
n→∞ PG

0

(
n−1/2 sup

m≤T n

∣∣dG (0,Xm) − dG (0,X+
m)

∣∣ > ε

)
= 0. (21)

Moreover,

lim
n→∞ P

(
n−1/4 sup

m≤T n

∣
∣Xm − X+

m

∣
∣ > ε

)
= 0. (22)

Proof We clearly have that μG (BG (Sm,n)) ≥ n, for every m,n ≥ 0. By applying the argu-
ment of [4], Proposition 3.3 (and also the Cauchy-Schwarz inequality as in the proof of [4],
Proposition 3.8), it follows that for P-a.e. realization of G , there exists a deterministic finite
constant c1 such that

PG
0 (Xn ∈ {Sm : 0 ≤ m ≤ T1}) ≤ c1n

−1/2, (23)

and, therefore, there exists a finite constant c2 such that

PG
0

(
n−1 sup

m≤n

∣∣AX
m − m

∣∣ > ε

)
≤ ε−1n−1EG

0

n−1∑

m=0

1{{Xm,Xm+1}∩{Sl :0≤l≤T1}�=∅}

≤ 2ε−1n−1
n∑

m=0

PG
0 (Xm ∈ {Sl : 0 ≤ l ≤ T1})

≤ c2n
−1/2,

for n ≥ 1. This bound implies that, for every ε,T ∈ (0,∞),

lim
n→∞ P

(
n−1 sup

0≤m≤T n

∣∣AX
m − m

∣∣ > ε

)
= 0,

and, by the continuous mapping theorem, the same result holds with α in place of AX . Con-
sequently, since X+

n = Xα(n) by definition, to complete the proof it will suffice to establish
the tightness of {(n−1/2dG (0,X�tn�))t≥0}n≥1 and {(n−1/4X�tn�)t≥0}n≥1 under the appropriate
measures.

Suppose that, for some δ, ε > 0 and n ≥ 1,

sup
l,m≤T n

|l−m|<δn

|dG (0,Xl) − dG (0,Xm)| > 2εn1/2
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and sup0≤m≤T1
dG (0, Sm) < εn1/2. Under these conditions, there exist l,m ≤ T n with

|l − m| < δn such that |dG (0,Xl) − dG (0,Xm)| > εn1/2 and also dG (0,Xl), dG (0,Xm) >

εn1/2. By the definition of α, the lower bound on dG (0,Xl) and dG (0,Xm) implies that
l = α(u),m = α(v) for some u,v ≥ 0, and for this choice of u,v we clearly have that
|dG (0,X+

u ) − dG (0,X+
v )| > εn1/2. Now, observing that |AX

m′ − AX
n′ | ≤ |m′ − n′| for every

m′, n′ ≥ 0, so that |α(m′) − α(n′)| ≥ |m′ − n′|, it is possible to deduce that u,v ≤ T n

and |u − v| ≤ |α(u) − α(v)| = |l − m| < δn. Thus, for P-a.e. realization of G and every
δ, ε, T ∈ (0,∞),

PG
0

⎛

⎝ sup
l,m≤T n

|l−m|<δn

|dG (0,Xl) − dG (0,Xm)| > 2εn1/2

⎞

⎠

≤ PG
0

⎛

⎝ sup
l,m≤T n

|l−m|<δn

∣∣dG (0,X+
l ) − dG (0,X+

m)
∣∣ > εn1/2

⎞

⎠ (24)

for large n, where we apply the fact that sup0≤m≤T1
dG (0, Sm) < εn1/2 for large n, P-a.s.

By Lemma 3.7, for P-a.e. realization of G , the sequence (n−1/2dG (0,X+
�tn�))t≥0 is con-

vergent in distribution as n → ∞, and therefore tight, under PG
0 . Hence (24) implies that

(n−1/2dG (0,X�tn�))t≥0 is also tight under PG
0 , for P-a.e. G , which establishes (21). The proof

of (22) is similar and is omitted. �

Combining the two previous lemmas yields Theorem 1.1, and we now prove Theo-
rem 1.2. The effective resistance operator on G will be denoted by RG .

Proof of Theorem 1.2 To prove the quenched transition probability asymptotics of (1), by
applying ideas from [4] and [20] (cf. [21], Sect. 3) it will suffice to demonstrate that there
exist deterministic constants c1, c2, c3, c4 ∈ (0,∞) such that, for P-a.e. realization of G ,

c1n ≤ μG (BG (0, n)) ≤ c2n, (25)

c3n ≤ RG (0,BG (0, n)c) ≤ c4n, (26)

for large n, where μG and BG were defined above Lemma 3.8. The lower bound of (25) is
obvious. To prove the upper bound, first observe that dG (0,Cn) ≥ n for every n ≥ 1, P-a.s.
Consequently, BG (0, n) ⊆ {Sm : 0 ≤ m ≤ Tn}. Furthermore, it is straightforward to check
that μG ({Sm : 0 ≤ m ≤ Tn}) ≤ 2Tn + 2. Thus μG (BG (0, n)) ≤ 4Tn, and the upper bound at
(25) follows from the ergodic limit result for the cut-times Tn at (6). By the connectedness
of the graph G , there exists at least one path of length n+1 from 0 to BG (0, n)c . This readily
implies that RG (0,BG (0, n)c) ≤ n + 1 ≤ 2n, for every n. To complete the proof of (26), we
first observe that

sup
m≤Tn

dG (0, Sm) ≤ sup
0≤m≤n

dG (0,Cm) + sup
0≤m≤n

(Tm+1 − Tm) ≤ 2δ(d)n

for large n, P-a.s., which can be proved by applying (17) and (18). Note that to apply (18), we
need to replace dG̃ by dG , which can be justified as in the proof of Lemma 3.7. Thus {Sm : 0 ≤
m ≤ Tn} ⊆ BG (0,2δ(d)n)) for large n, P-a.s. This result implies that, P-a.s., for large n, any
path from 0 to BG (0,2δ(d)n))c must pass through the edges {STm,STm+1}, 1 ≤ m ≤ n − 1.
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Consequently, simple properties of resistance yield that RG (0,BG (0,2δ(d)n))c) ≥ n− 1 for
large n, P-a.s., and the lower bound at (26) follows. �

We conclude this section with a couple of further remarks about the results in high di-
mensions. Firstly, in addition to the quenched transition probability bounds of Theorem 1.2,
it is also possible to deduce corresponding annealed bounds. More specifically, there exist
deterministic constants c1, c2 ∈ (0,∞) such that

c1n
−1/2 ≤ P(X2n = 0) ≤ c2n

−1/2, (27)

for every n ∈ N. For the upper bound we can simply take expectations in (23). For the lower
bound we apply Fatou’s lemma and the lower bound at (1) to deduce that

lim inf
n→∞ n1/2

P(X2n = 0) ≥ E
(

lim inf
n→∞ n1/2PG

0 (X2n = 0)
)

≥ c3,

where c3 is a strictly positive deterministic constant, and the result follows.
Secondly, for the alternative version of the random walk X described in the introduc-

tion with transition probabilities PG (x, y) := μxy/μx , where μxy is defined at (4) and
μx := ∑

y:{x,y}∈E(G) μxy , essentially the same proofs will yield the results corresponding to
Theorem 1.1 and 1.2. However in the electrical network interpretation of the random walk
on G̃ , the resistance metric RG̃ we need to consider is the effective resistance resulting when
each pair of adjacent vertices x, y ∈ V (G̃) is connected by a wire of conductance

μ̃xy := #
{
n : {S̃n, S̃n+1} = {x, y}

}
.

We also need to replace degG̃ (x) by μ̃x := ∑
y:{x,y}∈E(G̃) μ̃xy in the definitions of μG̃ , ν(d)

and η(d). The one point that requires a little more careful checking is that the revised ex-
pression for η(d),

Ê(μ̃0EG̃
0 H1)

Êμ̃0

, (28)

is finite. To do this, we proceed similarly to (13) to deduce that

μ̃0EG̃
0 H1 ≤ μ̃0 +

∑

x∈V (G̃)\{C−1,C1}:
{0,x}∈E(G̃)

μ̃0xEG̃
x H1

≤ μ̃0 +
∑

x∈V (G̃)\{C−1,C1}:
{0,x}∈E(G̃)

μ̃0xRG̃ (0, x)μG̃ (A\{0})

≤ μ̃0 + 2dμG̃ (A\{0})
≤ (1 + 4d)(T1 − T−1),

where A is defined as in the proof of Lemma 3.2 and for the third inequality we apply the
fact that RG̃ (0, x) ≤ μ̃−1

0x . The finiteness of (28) follows.
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4 Behavior at the Critical Dimension d = 4

In this section we will prove Theorems 1.3 and 1.4, demonstrating that when d = 4 the
process X and its transition density do not satisfy the same scaling results as in the high-
dimensional case, exhibiting logarithmic corrections to the leading order polynomial behav-
ior. We start by stating some known properties for the random walk S that will be used to
establish properties of the range of the random walk G . In a change of notation from the
previous section we will write (Tn)n≥1 to represent the elements of the set of cut-times T , as
defined at (2), arranged in an increasing order. Denoting the loop-erasure of (Sm)n

m=0 by Ln

(see [23], Sect. 7.2, for a definition), we define Y = (Yn)n≥0 by setting Yn to be equal to the
number of edges in the path Ln (so that in the notation of [23], Yn = ρn(n)).

Lemma 4.1 Let d = 4

(a) There exists a deterministic constant c1 ∈ (0,∞) such that

Tn

n(lnn)1/2

P→ c1,

as n → ∞.

(b) The process Y satisfies

lim
λ→∞ lim sup

n→∞
P

(
sup
m≤n

Ym ≥ λn(lnn)−1/3

)
= 0.

(c) P-a.s., the simple random walk S satisfies

#{Sm : 0 ≤ m ≤ n}
n

→ 1,

as n → ∞.

Proof Part (a) follows from the discussion in the introduction of [25]. To prove part (b), we
consider the process Y ′ = (Y ′

n)n≥0, defined by letting Y ′
n be equal to the number of the first

n points of S retained after loop-erasing the whole path (Sm)m≥0 (in [23], this is the process
ρ(n)). The asymptotic behavior of the expectation of Y ′

n is given by

EY ′
n ∼ c2n(lnn)−1/3,

as n → ∞, for some deterministic constant c2 ∈ (0,∞) (see [26], for example). Further-
more, it is possible to deduce that

sup
t∈[0,1]

∣
∣∣
∣
Y ′

�tn�
EY ′

n

− t

∣
∣∣
∣

P→ 0,

as n → ∞, by making a simple adaptation to the analogous result for the “inverse” of Y ′
proved in [23], Sect. 7.7. Consequently, part (b) of the lemma will follow if we can establish
that

supm≤n |Ym − Y ′
m|

n(lnn)−1/3

P→ 0, (29)
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as n → ∞. First, for n large enough, choose 0 = j0 < j1 < · · · < jk = n such that

1

2
n(lnn)−2 ≤ ji − ji−1 ≤ 2n(lnn)−2,

and k ∼ (lnn)2, and define for i = 1, . . . k,

Zi = 1{T ∩ [ji − ji(ln ji)
−6, ji] = ∅},

where T is the set of cut-times of S. As is demonstrated by [23], Lemma 7.7.4, we can check
that there exist constants such that (for large enough n)

EZi ≤ c3
ln ln ji

ln ji

≤ c4
ln lnn

lnn
, i = 1,2, . . . , k.

By simple considerations of the structure of the path, we can check that

sup
m≤n

|Ym − Y ′
m| ≤ n(lnn)−6 + 2n(lnn)−2

(

1 +
k∑

i=1

Zi

)

.

Thus, for ε > 0,

lim sup
n→∞

P
(

sup
m≤n

|Ym − Y ′
m| ≥ εn(lnn)−1/3

)

≤ lim sup
n→∞

P

(

4n(lnn)−2
k∑

i=1

Zi ≥ εn(lnn)−1/3

)

≤ lim sup
n→∞

4
∑k

i=1 EZi

(lnn)5/3

≤ lim sup
n→∞

c ln lnn

(lnn)2/3

= 0,

which confirms (29). Finally, part (c) is an easy consequence of [16], Theorem 12. �

These properties allow us to establish bounds for the volume of a ball centered at 0 with
respect to the measure μG , which was defined above Lemma 3.8. In the proof, we apply the
notation Cn := STn .

Lemma 4.2 If d = 4, then

lim
λ→∞ lim inf

n→∞ P
(
λ−1n(lnn)1/3 ≤ μG (BG (0, n)) ≤ λn(lnn)1/2

) = 1. (30)

Proof Since dG (0, Sm) > dG (0,Cn) ≥ n − 1 for every m > Tn, n ≥ 1, we have that

BG (0, n − 1) ⊆ {Sm : 0 ≤ m ≤ Tn}, (31)

for every n ≥ 1. Therefore

lim
λ→∞ lim sup

n→∞
P

(
μG (BG (0, n)) ≥ λn(lnn)1/2

)
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≤ lim
λ→∞ lim sup

n→∞
P

(
μG ({Sm : 0 ≤ m ≤ Tn+1}) ≥ λn(lnn)1/2

)

≤ lim
λ→∞ lim sup

n→∞
P

(
4Tn+1 ≥ λn(lnn)1/2

)

= 0,

where we apply the observation that μG ({Sm : 0 ≤ m ≤ Tn}) ≤ 2Tn + 2, which was also used
in the proof of Theorem 1.2, to deduce the second inequality and Lemma 4.1(a) to deduce
the final limit. This completes the proof of the right-hand inequality of (30).

To deduce the left-hand inequality of (30), first observe that dG (0, Sm) ≤ Ym for every
n ≥ 1. Thus, by applying Lemma 4.1(b), we obtain that

lim
λ→∞ lim sup

n→∞
P

(
sup
m≤n

dG (0, Sm) ≥ λn(lnn)−1/3

)

≤ lim
λ→∞ lim sup

n→∞
P

(
sup
m≤n

Ym ≥ λn(lnn)−1/3

)

= 0. (32)

Consequently,

lim
λ→∞ lim sup

n→∞
P

(
μG (BG (0, λn(lnn)−1/3)) ≤ λ−1n

)

≤ lim
λ→∞ lim sup

n→∞
P

(
#{Sm : 0 ≤ m ≤ n} ≤ λ−1n

)

= 0,

where we apply the fact that μG ({Sm : 0 ≤ m ≤ n}) ≥ #{Sm : 0 ≤ m ≤ n} to deduce the
inequality and note that Lemma 4.1(c) implies the equality. A simple reparameterization of
n and λ completes the proof. �

Combining the above results with standard arguments for random walks on graphs allows
us to deduce bounds for

τG (0, n) := inf{m : Xm �∈ BG (0, n)},

the exit time of X from a ball, and its expectation under PG
0 .

Lemma 4.3 If d = 4, then

lim
λ→∞ lim inf

n→∞ P
(
λ−1n2 ≤ EG

0 τG (0, n) ≤ λn2(lnn)1/2
) = 1, (33)

and also

lim
λ→∞ lim inf

n→∞ P
(
λ−1n2(lnn)−4/3 ≤ τG (0, n) ≤ λn2(lnn)1/2

) = 1. (34)

Proof That EG
0 τG (0, n) ≤ RG (0,BG (0, n)c)μG (BG (0, n)) is a well-known result, see [30],

Lemma 3.6, for example. As in the proof of Theorem 1.2, we have that RG (0,BG (0, n)c) ≤
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n + 1, and therefore the right-hand inequality of (33) is a straightforward consequence of
Lemma 4.2. To prove the left-hand inequality of (33), first suppose that

sup
m≤T2n

dG (0, Sm) ≤ λn(lnn)1/6, (35)

μG (BG (0, n)) ≥ λ−1n(lnn)1/3, (36)

and let gB be the quenched occupation density of the random walk on G killed on exiting
B := BG (0, λn(lnn)1/6), so that

EG
0 τG (0, λn(lnn)1/6) =

∑

x∈G

gB(x)μG ({x}).

By (35), any path from 0 to Bc passes through C2n, and therefore RG (0,Bc) ≥ R(0,C2n) ≥
2n− 1. Thus, applying an argument from the proof of [4], Proposition 3.4, for example, it is
possible to deduce that gB(x) ≥ cn, for every x ∈ BG (0, n) and n ≥ 2, where c is a strictly
positive deterministic constant. Consequently if (36) also holds, then

EG
0 τG (0, λn(lnn)1/6) ≥ cλ−1n2(lnn)1/3,

and so, in view of Lemma 4.2, to complete the proof of (33) it remains to establish that

lim
λ→∞ lim sup

n→∞
P

(

sup
m≤T2n

dG (0, Sm) ≥ λn(lnn)1/6

)

= 0. (37)

Applying Lemma 4.1(a), this is a straightforward adaptation of the result proved at (32).
On noting that, for λ > 0, ε ∈ (0,1),

P (τG (0, n) ≥ λ) ≤ E
(

EG
0 τG (0, n)

λ
∧ 1

)

≤ E
(

1{EG
0 τG (0,n)≥ελ}

)
+ E

(
EG

0 τG (0, n)

λ
1{EG

0 τG (0,n)<ελ}

)

≤ P
(
EG

0 τG (0, n) ≥ ελ
) + ε,

the right-hand inequality of (34) is readily deduced from the right-hand inequality of (33).
For the left-hand inequality, we adapt the argument of [21], Proposition 3.5(a). Firstly, sup-
pose that for some n,λ ≥ 2 and ε ∈ (0,1), we have that

λ−1(nδ)2 ≤ EG
0 τG (0, nδ) ≤ sup

x

EG
x τG (0, nδ) ≤ λ(nδ)2(lnnδ)1/2, (38)

where δ := (2λε)1/2, and (35) holds. We also assume that δ ∈ (0,1) and nδ + 1 ≤ n. Apply-
ing the strong Markov property at τG (0, nδ) yields

PG
0

(
τG (0, λn(lnn)1/6) ≤ εn2

)

≤ PG
0

(
τG (0, nδ) < εn2

)
sup

x∈BG (0,nδ+1)

PG
x

(
τG (0, λn(lnn)1/6) ≤ εn2

)
.
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To bound the second term, we again apply the strong Markov property, this time at T0 :=
inf{m : Xm = 0}, to obtain that

PG
x

(
τG (0, λn(lnn)1/6) ≤ εn2

)

≤ PG
x

(
τG (0, λn(lnn)1/6) < T0

) + PG
0

(
τG (0, λn(lnn)1/6) ≤ εn2

)
,

and therefore

PG
0

(
τG (0, λn(lnn)1/6) ≤ εn2

)

≤ PG
0

(
τG (0, nδ) ≥ εn2

)−1
sup

x∈BG (0,nδ+1)

PG
x

(
τG (0, λn(lnn)1/6) < T0

)
. (39)

We now explain how to bound each of these terms. For the first term, by a standard Markov
property argument, we have

EG
0 τG (0, nδ) ≤ εn2 + PG

0

(
τG (0, nδ) ≥ εn2

)
sup

x∈BG (0,nδ)

EG
x τG (0, nδ) (40)

from which it follows that

PG
0

(
τG (0, nδ) ≥ εn2

) ≥ (
2λ2(lnnδ)1/2

)−1
, (41)

where we apply (38) to bound the expectations in (40). The second term of (39) can be
bounded above by

sup
x∈BG (0,nδ+1)

RG (0, x)

RG (x,BG (0, λn(lnn)1/6)c)
≤ nδ + 1

n
= δ + n−1,

where the bound on the left-hand side of the above expression is well-known for graphs,
see [5], equation (4), for example. To deduce the first inequality, we apply that RG (0, x) ≤
dG (0, x) ≤ nδ+1 and also RG (x,BG (0, λn(lnn)1/6)c) ≥ RG (Cn,C2n) ≥ n, where this bound
is a consequence of (35), similarly to the resistance bound applied in the proof of the lower
bound for the expectation of the exit time from a ball. Combining these bounds, we have
proved that PG

0 (τG (0, λn(lnn)1/6) ≤ εn2) ≤ (2λ2(lnnδ)1/2)(δ + n−1). Finally, it is possible
to deduce from this fact, the left-hand inequality of (33), (37) and

lim
λ→∞ lim sup

n→∞
P

(
sup

x

EG
x τG (0, n) ≥ λn2(lnn)1/2

)
= 0,

which can be proved by a simple extension of the proof of the right-hand inequality of (33),
that

lim
λ→∞ lim sup

ε→0
lim sup

n→∞
P

(
τG (0, λn(lnn)1/6) ≤ εn2(lnn)−1

) = 0,

and the result easily follows. �

With these preparations in place, it is now relatively straightforward to prove Theo-
rems 1.3 and 1.4, demonstrating the necessity of logarithmic corrections when d = 4.

Proof of Theorem 1.3 For n ≥ 1, λ > 0, define the events

A0 := {
τG (0, n) ≤ λn2(lnn)1/2

}
,
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A1 := {{Sm : 0 ≤ m ≤ T�λ−1n(lnn)−1/6�} ⊆ BG (0, n)
}
,

A2 := {∣∣C�λ−1n(lnn)−1/6�
∣∣ ≥ λ−2n1/2(lnn)1/6

}
.

On the set A0 ∩ A1 ∩ A2,

max
m≤λn2(lnn)1/2

|Xm| ≥ max
m≤τG (0,n)

|Xm| ≥ ∣∣C�λ−1n(lnn)−1/6�
∣∣ ≥ λ−2n1/2(lnn)1/6,

where to deduce the second inequality, we note that the definition of a cut-time implies
that, on the set A1, by the hitting time τG (0, n), the process X must have hit the vertex
|C�λ−1n(lnn)−1/6�|. The left-hand inequality of (3) will follow easily from this if we can estab-
lish that

lim
λ→∞ lim sup

n→∞
P

(
Ac

i

) = 0,

for i = 0,1,2. The result for i = 0 was proved in Lemma 4.3. For i = 1, observe that

P(Ac
1) ≤ P

(
T�λ−1n(lnn)−1/6� ≥ λ−1/2n(lnn)1/3

)

+ P
(

max
m≤λ−1/2n(lnn)1/3

dG (0, Sm) ≥ n

)
,

and so limλ→∞ lim supn→∞ P(Ac
1) = 0 by Lemma 4.1(a) and (32). Similarly, P(Ac

2) is
bounded above by

P
(
T�λ−1n(lnn)−1/6� �∈ [λ−2n(lnn)1/3, λ−1/2n(lnn)1/3])

+ P
(

inf
m∈[λ−2n(lnn)1/3,λ−1/2n(lnn)1/3]

|Sm| ≤ λ−2n1/2(lnn)1/6

)
.

Again applying Lemma 4.1(a) and well-known scaling properties of simple random walk
and Brownian motion, we obtain that

lim
λ→∞ lim sup

n→∞
P(Ac

2) ≤ lim
λ→∞ P

(
inf

t∈[λ−2,λ−1/2]
|W(d)

t | ≤ λ−2

)

≤ lim
λ→∞ P

(
inf
t≥1

|W(d)
t | ≤ λ−1

)
.

Since inft≥1 |W(d)
t | > 0, P-a.s., the right-hand side is equal to 0, as desired.

Similarly, for n ≥ 1, λ > 0, define

B0 := {
τG (0, n) ≥ λ−1n2(lnn)−4/3

}
,

B1 := {
Tn+2 ≤ λn(lnn)1/2

}
,

B2 :=
{

sup
m≤λn(lnn)1/2

|Sm| ≤ λn1/2(lnn)1/4

}

,

so that on the set B0 ∩ B1 ∩ B2 we have

max
m≤λ−1n2(lnn)−4/3

|Xm| ≤ max
m≤τG (0,n)

|Xm| ≤ sup
x∈BG (0,n+1)

|x|
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≤ sup
m≤Tn+2

|Sm| ≤ sup
m≤λn(lnn)1/2

|Sm| ≤ λn1/2(lnn)1/4,

where we apply (31) to deduce the third inequality. Thus the right-hand inequality of (3) is
a consequence of the fact that

lim
λ→∞ lim sup

n→∞
P

(
Bc

i

) = 0,

for i = 0,1,2, which can be deduced by applying Lemma 4.3 in the case i = 0,
Lemma 4.1(a) for i = 1 and simple random walk scaling properties for i = 2. �

Before proceeding with our final proof, let us remark that the result of Theorem 1.3 shows
that the extra intersections of S in d = 4 lead to the random walk X moving logarithmically
more quickly away from 0 with respect to Euclidean distance than in higher dimensions.
With respect to the graph distance, however, (33) suggests that with respect to the graph
distance X will move no quicker when d = 4 than in higher dimensions. Although this may
at first seem paradoxical, it can be explained by observing that the extra connectivity of the
graph in d = 4 allows X to access more easily points that are later in time on the S path, but
reduces the graph distance to them.

Proof of Theorem 1.4 A standard argument, see [21], Proposition 3.1(a), for example,
implies that if μG (BG (0,R)) ≥ λ−1R(lnR)1/3, then PG

0 (X2n = 0) ≤ cλn1/2(lnn)−1/6 for
1
2R2(lnR)1/3 ≤ n ≤ R2(lnR)1/3, where c is a finite deterministic constant. Thus the upper
transition probability bound of Theorem 1.4 can be deduced from the lower volume bound
of Lemma 4.2.

For the lower transition probability bound, another standard argument can be applied.
First, if 2R2 ≤ EG

0 τG (0, λR) and μG (BG (0, λR)) ≤ λ2R(lnR)1/2, then, similarly to (41),
we have that PG

0 (τG (0, λR) > R2) ≥ (λ3(lnR)1/2)−1. Applying Cauchy-Schwarz, as in the
proof of [21], Proposition 3.2, for example, it follows that

μG (BG (0, λR))PG
0 (X2R2 = 0) ≥ (

λ6(lnR)
)−1

,

and, therefore, our upper volume bound assumption implies that

PG
0 (X2R2 = 0) ≥ (

λ8R(lnR)3/2
)−1

.

Thus the desired result is a consequence of Lemmas 4.2 and 4.3. �
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